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We present extensive Monte Carlo simulations for the thermodynamic and structural properties of a planar
bilayer of dipolar hard spheres for a wide range of densities, dipole moments, and layer separations. Expres-
sions for the stress and pressure tensors of the bilayer system are derived. For all thermodynamic states
considered, the interlayer energy is shown to be attractive and much smaller than the intralayer contribution to
the energy. It vanishes at layer separations of the order of two hard sphere diameters. The normal pressure is
negative and decays as a function of layer separation h as −1 /h5. Intralayer and interlayer pair distribution
functions and angular correlation functions are presented. Despite the weak interlayer energy, strong positional
and orientational correlations exist between particles in the two layers.
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I. INTRODUCTION

Dipolar interactions play a significant role in determining
the structural, magnetic or rheological properties of a variety
of quasi-two-dimensional �2D� systems �monolayers, multi-
layers, thin films� including suspensions of colloidal particles
at an air-water interface, adsorbed amphiphilic molecules,
lipid bilayers, ultrathin magnetic films, etc.. �see, e.g., Ref.
�1� and references therein�. In most of these systems the
properties and phase behavior result, though, from an inter-
play of the dipolar interaction with competing interactions,
such as, for instance, the hydrocarbon chain tails or water-
mediated interactions in lipid bilayers �2,3�, or exchange in-
teraction and magnetocrystalline anisotropy in thin magnetic
films �4�. Although simulations taking into account full
atomic details have been performed in the past �generally
computationally costly� for these kinds of systems �see, e.g.,
Ref. �5� and references therein�, we believe that a study of a
purely dipolar bilayer system is of interest in its own right,
providing unbiased insight into the role of the dipolar inter-
action. The experimental system which perhaps comes clos-
est to the pure dipolar system is the ferrofluid system. In
effect, association into chains, rings, branched structures, or
stripes has been demonstrated in recent experiments on
strongly interacting �Fe3O4� ferrofluids �6–8�, and compari-
son with simulation results presenting similar structures is
more than suggestive that the dipolar hard sphere �DHS� sys-
tem is a fair representation of these types of ferrofluid.

Extensive Monte Carlo �MC� simulation and theoretical
results for the self-organization of quasi-2D DHSs are al-
ready available for the monolayer system both with and
without an external field �9–18�. The purpose of the present
paper is to extent these results to a symmetric planar bilayer;
the main interest, evidently, being to probe the effect of the
interlayer interaction on particle organization.

In Sec. II we define the bilayer model and give details of
the numerical simulation methods we use. The next section
gives expressions for the energy, stress tensor, and correla-
tion functions of the bilayer system. Section IV contains the
simulation results for the thermodynamic and structural
properties. A summary is given in the last section. The three
appendixes provide expressions for the Ewald sums of en-
ergy �Appendix A�, pressure and forces �Appendix C�, and a
derivation of the microscopic stress tensor of the bilayer
�Appendix B�.

II. MODEL AND NUMERICAL METHODS

The systems consist of N=2N0 particles with permanent
point dipole moment � interacting via hard sphere and dipo-
lar potentials. Particles are evenly distributed among two lay-
ers L1 and L2 separated by a distance h, each layer being
rectangular with sides Lx and Ly; A=LxLy is the surface area
of the layers. Periodic boundary conditions �PBCs�, with
spatial periodicities Lx and Ly, are applied in the directions x
and y parallel to the layers, but no PBCs are taken in the
third direction z. Particle positions are constrained to lie in
the layers but dipole moments can orient in full 3D space.
The interaction potential between the particles is pairwise
additive and is represented as

��rij,�i,� j�

= �� for rij � � ,

1

rij
3 ��i · � j − 3��i · r̂ij��� j · r̂ij�� for rij � � , �

�1�

where �=1 is the hard sphere diameter taken as unit length,
�i the dipole moment of particle i, and r̂ij =rij /rij the unit
bond vector between particles i and j. In the following, we
will use the notations
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rij = sij + zijêz and �i = ��̂i �2�

where êz is the unit vector perpendicular to the layers and �̂i
a unit vector in the direction of dipole moment i.

Only surface separations h�1 which avoid hard core in-
teractions between the layers have been considered. A few
simulation results for h�1 have been presented previously
by one of us �1�.

Monte Carlo simulations have been performed in the ca-
nonical �NVT� ensemble with system sizes comprising N
=1024–3200 particles. The total number of MC cycles var-
ied from 0.2	106 to 2	106, depending on density and di-
pole moment, each cycle consisting of displacement and ro-
tation of the N particles. The amplitude of the trial moves
was chosen to obtain acceptance ratios between 30% and
50% for each thermodynamic state. No exchange of particles
between layers L1 and L2 is allowed.

Reduced quantities for surface area A�=A /�2, surface
density 
�=
�2=N0 /A�2, and dipole moment ��

= ��2 /kT�3�1/2 will be used throughout the paper. For nota-
tional convenience the asterisks will be dropped.

III. THERMODYNAMICAL AND STRUCTURAL
QUANTITIES

A. Energy

In our model the energy of the bilayer is entirely given by
the dipolar contribution which we split into an intralayer
contribution, Uintra, and an interlayer contribution, Uinter, as

Udd = Uintra + Uinter. �3�

These are computed using the Ewald method �1,19–21�; the
relevant expressions for Uintra and Uinter are given in Appen-
dix A.

For bulk systems with slab geometry where periodicity
applies only in two spatial directions, say Lx and Ly, the
Ewald sums are computationally costly, due to the appear-
ance in the reciprocal space term of a double sum over the
distance zij in the bounded direction of particles i and j
�19,20�. As in the present case the distance zij between two
particles will be constant; the corresponding sums can be
reduced to order N �1� similarly to the cases of the Coulomb
�22,23� or Yukawa �24� potentials.

One can note that the 3D bilayer system can be mapped
onto a two-component monolayer system by considering the
particles in the two layers as distinct species �25�. For most
of the thermodynamical and structural quantities, both ap-
proaches are equivalent; for instance, in the two-component
monolayer, Uinter is the total interaction between particles
belonging to different species �different layers�. As outlined
in the next section and in Appendix B, for pressures and
stresses such a mapping is slightly less straightforward.

B. Surface stress tensor and normal pressure

Characterizing the pressure in the bilayer system needs
some care. In particular, since the particles are constrained to
belong to layers L1 and L2, some degrees of freedom of the
particles are frozen by the geometrical features of the system.

These constraints have obviously an influence on the flux of
momentum per unit area in the system and therefore affect
the stress tensor. For the sake of definitness a full derivation
of the stress tensor from the Lagrangian function of the bi-
layer system is given in Appendix B.

As for systems with slab geometry or interfaces �26�, the
stress tensor is decomposed into lateral and normal compo-
nents. According to Eqs. �B13�–�B15�, the lateral component
to the pressure tensor is given by

�T = 2
kT −
1

4A� �
i�L1

�
j�L1,j�i

sij · �i��sij,0�	
−

1

4A� �
i�L2

�
j�L2,j�i

sij · �i��sij,0�	
−

1

2A� �
i�L1

�
j�L2

sij · �i��sij,h�	 , �4�

where ��sij ,h� is the pair potential.
From the point of view of mapping the bilayer system

onto a two-component monolayer system, the lateral pres-
sure �T in the bilayer, defined in Eq. �4� through Eqs.
�B12�–�B15�, corresponds to the pressure of the 2D, two-
component monolayer system. In solid surface physics, �T is
related to the surface stress �̃ by �T=−�̃ �cf. Eq. �B15��, and
for fluids confined in slab geometry �T is related to the lat-
eral pressure PT�z� by

�T =
 dz PT�z� .

�T can be composed into ideal, hard sphere �HS�, and dipo-
lar contributions

�T = 2
kT + 2�T
�HS� + �T,inter

�HS� + �T
�dd�, �5�

where the dipolar part �T
�dd� is obtained from Eq. �1� and the

relation

sij
�i

���dd��sij,h�

= 3
sij

sij
�

�sij
2 + h2�5/2��i · � j

− 5
��i · sij + �i

zh��� j · sij + � j
zh�

sij
2 + h2 �

− 3
sij



�sij
2 + h2�5/2 ���i · sij + �i

zh�� j
�

+ �� j · sij + � j
zh��i

�� �6�

�see Eq. �B14� of Appendix B�. �T
�dd� contains both intralayer

contributions of layers L1 and L2 and the interlayer contribu-
tion; thus, for h→�, �T

�dd� is twice the dipolar contribution
to the 2D pressure of a monolayer. The dipolar interlayer
contribution to �T is given by the last contribution in the
right-hand side �RHS� of Eq. �4�; this contribution becomes
very small as soon as h�2.

The hard sphere contributions �T
�HS� and �T,inter

�HS� , are com-
puted from the contact values of the intralayer, gintra

000 ���, and
interlayer, ginter

000 , pair distribution functions, defined below, as
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�T
�HS� =

�

2

2kTgintra

000 ��� ,

�T,inter
�HS� =

�

2
�2
�2kTginter

000 ��1 −
h2

�2� . �7�

As in the present work, h�1 in all computations, we always
have �T,inter

�HS� =0. In the limit h→� and �→0, �T
�HS� equals

the excess contribution to the pressure of a monolayer of
hard disks with surface density 
. Moreover, for h�1 and
�=0, �T

�HS� can be approximated quite accurately by avail-
able equations of state of hard disks �see, e.g., Ref. �27��.

The asymptotic behavior of �T given by Eq. �5� can be
understood as follows. In the limit h→� and ��0, �T,
given by Eq. �5�, is exactly twice the 2D pressure of a mono-
layer of DHSs with the same 
 and �. In this limit, if the
system is viewed as a two-component monolayer system, the
two species remain distinct but there will be no interaction
between particles belonging to different species. Thus, �T /2
is exactly the partial pressure of each component, and the
bilayer is fully equivalent to a mixture of two kinds of par-
ticles confined in a monolayer with HS and dipolar interac-
tions between like particles but no interactions between un-
like particles.

In the opposite limit h→0 and ��0, the two species
become equal and the bilayer system reduces to a one-
component monolayer system with a surface density 2
 �pro-
vided that 2
 is less than the density at close packing of hard
disks�. Obviously, in this limit, the contribution �T,inter

�HS� has
also to be included in Eq. �5�, and �T equals the 2D pressure
of a monolayer of dipolar hard disks with a surface density
2
 and the same �. Also, as in this limit particles become
indistinguishable, entropy contributions must be modified ac-
cordingly.

The average normal force by unit area �or normal pres-
sure� is obtained from Eq. �B19� as

Pzz = −
1

A� �

�z
�

i�L1

�
j�L2

���sij,z��z=h	
= −

N

A� �Uinter/N
�h 	 = Pzz

�dd� + Pzz
�HS�, �8�

where Pzz
�dd� and Pzz

�HS� denote the contributions from dipolar
and HS interactions, respectively. The dipolar parts Pzz

�dd� and
�T

�dd� are computed using Ewald sums, as described in Ap-
pendix C. Since in the present work all computations are
done with h�1 one has always Pzz

�HS�=0. The HS repulsion
does, however, contribute to the normal component of the
pressure tensor indirectly via the spatial positions of the par-
ticles in the layers. A similar remark applies to the interlayer
correlation functions defined below. Equation �8� agrees with
previous derivations for the normal pressure in slablike ge-
ometry �28–30� or interfaces �26�. The main difference be-
tween Eq. �8� and these relations is that there is no kinetic
�ideal gas� contribution in Eq. �8�, as a consequence of the
constraints that apply to the bilayer systems �cf. Eq. �B7��.
Thus, Pzz has to be considered as an average force per unit
area normal to the surface rather than a normal pressure.

The surface stress tensor is related to the surface free
energy per unit area � �or surface tension� by the Shuttle-
worth equation �31�

�� = ��� +
��

���

, �9�

where �� is the 2D strain tensor. In fluid phases, the second
contribution in the RHS of Eq. �9� is null and Eq. �9� reduces
to ��=���. This is the case in most computations done in
the present work, except those at high densities. Since in our
computations the surface and the shape of the layers are kept
constant, we do not have access to �.

C. Correlation functions

The structure of the bilayer system has been character-
ized, analogously to the monolayer case �9,14� by a one-
particle orientational distribution function of the dipoles and
several pair correlation functions.

The orientational distribution function f��̂�, measuring
the orientation of the particle dipole moments with respect to
the layer normal, is defined from the one-body density as


�1��r,�̂� = ��
i

��ri − r����̂i − �̂�	 =



4�
f��̂� . �10�

Pair correlation functions are derived from the general defi-
nition of the two-body density


�2��r,r�,�̂,�̂��

=��
i�j

N

��ri − r���r j − r�����̂i − �̂����̂ j − �̂��	 , �11�

where �̂ and �̂� are unit vectors along the dipole moments.
Specifying to intralayer 
intra

�2� and interlayer 
inter
�2� two-body

surface densities, one has


intra
�2� �s,�̂,�̂��

=
1

4�s� �
i�L1

�
j�L1,j�i

��s − �sij�����̂i − �̂����̂ j − �̂��

+ �
i�L2

�
j�L2,j�i

��s − �sij�����̂i − �̂����̂ j − �̂��	 ,


inter
�2� �s,�̂,�̂��

=
1

2�s� �
i�L1

�
j�L2

��s − �sij�����̂i − �̂����̂ j − �̂��	 . �12�

The intralayer gintra�12� and interlayer ginter�12� distribution
functions are related to the two-body densities through

gintra�12� = 1 + hintra�12� = 4�



�2


intra
�2� �s,�̂1,�̂2� ,

ginter�12� = 1 + hinter�12� = 4�



�2


inter
�2� �s,�̂1,�̂2� . �13�

In particular, the intralayer gintra
000 �s� and interlayer ginter

000 �s�
center-to-center pair distribution functions are given by
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gintra
000 �s� =

1

4�s
N0
� �

i�L1

�
j�L1,j�i

��s − �sij��

+ �
i�L2

�
j�L2,j�i

��s − �sij��	
= �gintra�12���̂1�̂2

,

ginter
000 �s� =

1

2�s
N0
� �

i�L1

�
j�L2

��s − �sij��	 = �ginter�12���̂1�̂2
,

�14�

where si is the in-plane position of particle i according to the
notations defined in Eq. �2� and �·��̂1�̂2

denotes averaging
over orientations of the dipole moments. The angular-
dependent pair correlation functions h�12� have been ex-

panded, as usual, on a basis set of rotational invariants �̃l1l2l

�32,33�

h�12� = �
l1,l2,l

h�l1,l2,l;r��̃l1l2l��̂1,�̂2, r̂� , �15�

where the �̃l1l2l are related to the standard rotational invari-
ants �l1l2l in an expansion on spherical harmonics by �see,
e.g., �34��

�̃l1l2l =
1

l!
l1 l2 l

0 0 0
��l1l2l. �16�

The most significant projections of the intralayer hintra�12�
and interlayer hinter�12� correlation functions calculated in

this work are those onto �̃110, �̃112, and �̃220. The corre-
ponding expressions are summarized in Table I.

D. Order parameter

Possible orientational �nematic� order in a layer can be
established from the nonvanishing of the second-rank order
parameter P2 calculated as the average value of the largest
eigenvalue of the matrix �37�

Q� =
1

N0
�

i

N0 1

2
�3�̂�

i �̂
i − ��� , �17�

where �̂�
i is the � component of the unit vector �̂i. One can

note that the projection h220 obeys the asymptotic relation-
ship

h220�s� � 5P2
2, s → � . �18�

As will be shown below no global nematic order occurs in
the systems for 
�0.7.

IV. RESULTS

A. One-body orientational distribution function

One-body distribution functions f��̂�= f(cos���), with po-
lar angle � defined by cos �= �̂ · êz, obtained from MC simu-
lation at various thermodynamic states are shown in Fig.
1�a�. It is seen that for all states an excellent fit to the MC
data is obtained with the one-parameter function

f�cos �;a� = f0 exp�− a cos2 �� �19�

with normalization constant

f0 =� a

�

1

erf��a�
. �20�

Values of a obtained by fitting the MC histograms P�cos ��,
normalized to 1, are given in Tables II–IV. The results for the
orientational distribution functions of the bilayer system are
quite similar to those obtained earlier for monolayers �12�.
As � increases the dipole moments tilt more and more into
the layer plane �cos ��0�. The interaction between the two
layers induces, though, a slight effect, in comparison to the
monolayer system, as seen in Fig. 1�b� showing the variation
of the orientational distributions with interlayer separation h
for 
=0.7 and �=2.00. As the separation between the layers
decreases, the coupling between layers increases, which en-
tails a slight tendency of the dipoles to orient perpendicularly
to the plane. As a consequence the distributions are slightly
broadened �the value of a decreases�.

B. Energy

The variation of the intralayer Uintra /N and interlayer
Uinter /N energies as a function of layer separation are sum-
marized in Table II for the density 
=0.7 and the two dipole
moments �=1 and 2. The intralayer energy is seen to be by
far the dominant contribution and is nearly independent of h,
especially at the largest dipole moments where in-plane ori-
entation of the dipole moments is prevalent. The interlayer
energy is much smaller and decreases rapidly with layer
separation vanishing at h�2. The total energy remains prac-
tically constant when h varies from 1.05 to 2.0.

TABLE I. Definitions of the projections of intralayer and interlayer correlation functions computed in the
present work.

�l1 , l2 , l� �̃l1l2l Intralayer and interlayer
functions

�0,0,0� 1 gintra,inter
000 �s�= �gintra,inter�12���̂1�̂2

�1,1,0� �̂1 · �̂2 hintra,inter
110 �s�=3�gintra,inter�12��̃110�12���̂1�̂2

�1,1,2� 3��̂1 · r̂���̂2 · r̂�− �̂1 · �̂2 hintra,inter
112 �s�= 3

2 �gintra,inter�12��̃112�12���̂1�̂2

�2,2,0� 1
2 �3��̂1 · �̂2�2−1� hintra,inter

220 �s�= 5
2 �gintra,inter�12��̃220�12���̂1�̂2
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Attard and Mitchell have applied a second-order pertur-
bation theory on a bilayer of orientable dipoles �35,36� and
found that the interaction free energy between the surfaces
decays as the fourth power of h at large separation. An analy-
sis of our MC data, for h�1.6, agrees with the behavior
obtained in the computations done by Attard and Mitchell;
more precisely, the variation of the interlayer energy with h,
for 
=0.7 and �=1 and 2, can be quite well represented by

Uinter

N
= −

e0

h4 −
e1

h10 , �21�

where e0 and e1 are obtained by a fit to the simulation results
�see Fig. 2�a��.

Table III summarizes energy values obtained at fixed
layer separation h=1.05 for various dipole moments in the
density range 
=0.3−0.7. For all densities considered the
intralayer energy decreases with decreasing � and saturates
near ��2.5. The variation with density diminishes when the
dipole moment is increased. The interlayer energy is much
smaller than the intralayer contribution presenting, at all den-

sities, a shallow minimum in the range ��1.75–2.0 where
appreciable chaining of the particles sets in.

C. Pressure and surface stress

Similar to the interlayer energy, the normal pressure at
constant � and 
 is quite well represented, as a function of h,
by

Pzz = −
f0

h5 −
f1

h11 . �22�

However, as for a thermodynamical variable X generally

� �X

�h
	 �

��X�
�h

,

the fitting parameters f0 and f1 for the pressure do not relate
directly to those for the energy. Nevertheless, the functional
form of Eq. �22� obtained as the derivative of Eq. �21� pro-
vides quite good agreement between simulation results and
Eq. �22� �see Fig. 2�b��.

As seen in Table II, the surface stress, for 
=0.7, is fairly
independent of h for �=1 and 2. For �=1, all the thermo-
dynamic quantities �T

�dd� and �T
�HS� that contribute to �̃

through Eqs. �B15� and �5� are nearly constant. For �=2, �̃
appears also to be insensitive to h, but a small counterbal-
ance between �T

�dd� and �T
�HS� is observed as h increases from

1.01 to 1.15. As apparent from the one-body orientational
distribution functions, for h between 1.01 and 1.15 and �
=2, the dipoles are on average less parallel to the layers than
would be the case for larger h values. Thus, the attraction
between particles in the same layer is slightly decreased in
comparison to a monolayer; this increases �T

�dd� and reduces
�T

�HS�, since fewer contacts between particles are observed in
gintra

000 ���. One should note, though, that this effect is quite
small �see Table II�.

The values of �̃, for �=1, 
=0.7, and h�2.00, given in
Table II, agree with the results obtained for the 2D pressure
of the monolayer �see Tables I and II in Ref. �14��. As out-
lined in Sec. III B, the value of �T obtained from �̃ is twice
the value of the pressure found in Ref. �14��.

As shown previously, the 2D pressure of a monolayer of
DHSs may be related to the internal energy of the monolayer
�see Eq. �21� in Ref. �14��. For the bilayer, we obtain almost
exactly the same result, except for a factor of 2 discussed
before in Sec. III B. In Fig. 3�a�, we have represented −�T

�dd�

as a function of −Uintra /A; it appears that the dipolar contri-
bution to the lateral pressure of the bilayer is very well rep-
resented by

�T
�dd� = 3
kT

Uintra

N
= 3

Uintra

A
. �23�

Thus, for 
�0.7 and ��2.5, the equation of state is given
by an equation similar to Eq. �21� of Ref. �14� as

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
cos(θ)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

P(
co

s
θ)

ρ = 0.5 ; µ = 1.00
ρ = 0.5 ; µ = 2.50
ρ = 0.6 ; µ = 1.50
ρ = 0.7 ; µ = 2.50
sinθ f(θ ; a)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
cos(θ)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

P(
co

s
θ)

h = 1.05
h = 1.15
h = 1.25
h = 1.35
h = 1.45
h = 1.55
h = 1.65
h = 1.80
h = 1.95
h = 2.10
sinθ f(θ ; a)

-0.2 0.0 0.2

(b)

(a)

FIG. 1. �Color online� Orientational distribution functions of
dipolar moments in a bilayer of dipolar hard spheres. Symbols de-
note MC data and solid lines are fits using Eq. �19�. �a� Results at
selected values of 
 and � at h=1.05. �b� Variation with layer
separation h for 
=0.7 and �=2.00.
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�T

2
kT
= 1 +

�T
�HS�


kT
+

3

2

Uintra

N
= −

�̃

2
kT
. �24�

The variation of �̃ with dipole moment is shown in Fig. 3�b�
for h=1.05 and various densities. �̃ can be approximated
empirically by relations such as

�̃�
,�� = − 2
kT − 2�T
�HS��
,0� + g�a1;
,�� , �25�

where g�a1 ;
 ,�� is a function of the fitting parameter a1 and
�T

�HS��
 ,0� obtained from the equation of state of hard disks
�see, for instance, Ref. �27��. Several functional forms for g,
such as, for instance, g1�a1 ;
 ,��=a1
2�4 / �1+�2�, with a1
�2.7, or g2�a2 ;
 ,��=a2
2�5/2, with a2�1.6, were found to
reproduce quite accurately the numerical results given in
Table IV.

D. Structural properties

Structural properties of the bilayer can be conveniently
characterized by the coefficients g000, h110, h112, and h220 of
the expansion of the intra- and interlayer pair correlation
functions hintra�1,2� and hinter�1,2� on a set of rotational in-

variants as described in Sec. III C. Selected results for both
intra- and interlayer correlation functions for h=1.05 at den-
sities 
=0.3 and 0.7 are shown in Figs. 4–6. The intralayer
correlation functions for �=1, reported in Fig. 4, agree very
well with the correlation functions of the monolayer for the
same 
 and for �=1 �see Fig. 4 of Ref. �14��.

The intralayer correlation functions present a succession
of well-defined peaks reflecting the formation of chains as
also apparent from snapshots of configurations �Figs. 7�a�
and 7�b��. The peaks sharpen with increasing dipole moment,
indicating stronger bonding of the particles in the chains. The
intralayer correlations appear to be quite insensitive to the
layer separation and coincide within statistical error in the
range h=1.05–2.0.

The interlayer correlation function gives information on
the organization of particles in one layer relative to those in
the other layer. Although the energy coupling between the
layers is quite small, one observes a strong correlation of the
positional and orientational order of the particles in the two
layers �at least for h�2�. Inspection of the interlayer distri-
bution function ginter

000 reveals, for dipole moments ��2, a
high probability of the particles to be on top of each other

TABLE II. Average energies and pressures for the bilayer system for 
=0.7 and several values of h. The numbers in brackets give the
accuracy on the last digit of the averages. a is the width of the one-body orientational distribution obtained by fitting the MC histograms.
Udd /N, Uintra /N, and Uinter /N denote, respectively, the averages of total, intralayer, and interlayer dipolar energies. Pzz

�dd� is the average
normal force per unit area as defined by Eq. �7�. �T

�dd� is the average of the dipolar contribution to the lateral pressure computed with Eq. �4�
and �T

�HS� is the hard sphere contribution computed from the contact value of the pair distribution function Eq. �6�. �̃=−2
kT−2�T
�HS�

−�T
�dd� is the surface stress as defined in Eq. �B15�.

� h a Udd /N Uintra /N Uinter /N Pzz
�dd� �T

�dd� �T
�HS� �̃

1.00 1.05 0.36 �0.70�2� �0.55�2� �0.16�1� �0.44�4� �1.24�5� 3.2�2� �6.6�2�
1.15 0.43 �0.67�2� �0.57�2� �0.10�1� �0.26�3� �1.25�4� 3.1�1� �6.4�1�
1.25 0.48 �0.65�2� �0.58�2� �0.07�1� �0.17�2� �1.26�4� 3.1�1� �6.3�1�
1.35 0.52 �0.64�2� �0.59�2� �0.05�1� �0.11�1� �1.27�4� 3.1�1� �6.3�1�
1.45 0.52 �0.63�2� �0.59�2� �0.04�1� �0.07�1� �1.28�4� 3.2�1� �6.5�1�
1.55 0.53 �0.62�2� �0.60�2� �0.03�1� �0.05�1� �1.27�3� 3.1�1� �6.3�1�
1.65 0.57 �0.62�2� �0.60�2� �0.021�5� �0.03�1� �1.27�4� 3.1�1� �6.3�1�
1.80 0.55 �0.62�2� �0.60�2� �0.015�4� �0.02�1� �1.29�4� 3.1�1� �6.3�1�
1.95 0.57 �0.62�2� �0.61�2� �0.011�3� �0.015�5� �1.29�4� 3.1�1� �6.3�1�
2.10 0.57 �0.62�2� �0.61�2� �0.008�3� �0.010�4� �1.28�4� 3.2�1� �6.5�1�
2.40 0.57 �0.61�2� �0.61�2� �0.005�2� �0.005�3� �1.27�4� 3.1�1� �6.3�1�
3.00 0.58 �0.61�2� �0.61�2� �0.003�2� �0.002�1� �1.26�4� 3.2�1� �6.5�1�

2.00 1.01 3.8 �6.3�1� �5.7�1� �0.56�4� �1.8�1� �12.2�1� 6.5�3� �2.2�4�
1.05 4.2 �6.3�1� �5.8�1� �0.42�3� �1.3�1� �12.5�1� 6.8�3� �2.5�4�
1.10 4.6 �6.3�1� �5.9�1� �0.32�3� �0.9�1� �12.7�1� 6.8�3� �2.3�4�
1.15 4.8 �6.3�1� �6.1�1� �0.24�2� �0.6�1� �12.8�1� 7.0�3� �2.6�4�
1.25 5.2 �6.3�1� �6.1�1� �0.16�2� �0.32�3� �13.0�1� 7.0�3� �2.4�4�
1.35 5.4 �6.3�1� �6.2�1� �0.11�1� �0.20�2� �13.1�1� 7.1�3� �2.5�4�
1.45 5.5 �6.3�1� �6.2�1� �0.08�1� �0.13�2� �13.1�1� 7.1�3� �2.5�4�
1.55 5.6 �6.3�1� �6.21�5� �0.06�1� �0.09�2� �13.2�1� 7.1�3� �2.4�4�
1.65 5.6 �6.3�1� �6.23�5� �0.05�1� �0.06�1� �13.2�1� 7.1�3� �2.4�4�
1.80 5.7 �6.3�1� �6.25�5� �0.03�1� �0.03�1� �13.1�1� 7.1�3� �2.5�4�
1.95 5.7 �6.3�1� �6.28�5� �0.02�1� �0.03�1� �13.3�1� 7.1�3� �2.3�4�
2.10 5.7 �6.3�1� �6.28�5� �0.019�5� �0.019�5� �13.2�1� 7.1�3� �2.4�4�
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with opposite directions of the dipole moments �hinter
110 nega-

tive at s=0�. In addition, at dipole moments ��2.25, peaks
appear in ginter

000 at s= �0.5+n�� �n=0,1 ,2 , . . .� at which hinter
110

is positive, giving evidence for configurations in which two

chains in different layers are nearly on top of each other
�with possibly some lateral displacement� such that the chain
axes of the two chains are displaced by half a HS diameter.
In this case the dipole moments point in the same direction.

TABLE III. Average energies for the bilayer system for several values of 
 and � for h=1.05. Notations are the same as in Table II.

� 
 Udd /N Uintra /N Uinter /N a � 
 Udd /N Uintra /N Uinter /N a

1.00 0.3 �0.29�1� �0.19�1� �0.10�1� 0.07 2.00 0.3 �4.9�1� �4.3�1� �0.52�3� 3.1

0.4 �0.39�2� �0.26�2� �0.12�1� 0.12 0.4 �5.2�1� �4.7�1� �0.50�3� 3.4

0.5 �0.49�2� �0.35�2� �0.14�1� 0.18 0.5 �5.6�1� �5.1�1� �0.48�4� 3.6

0.6 �0.59�2� �0.44�2� �0.15�1� 0.25 0.6 �5.8�1� �5.4�1� �0.46�3� 3.8

0.7 �0.70�2� �0.54�2� �0.16�1� 0.35 0.7 �6.3�1� �5.8�1� �0.42�4� 4.2

1.25 0.3 �0.68�2� �0.46�2� �0.22�2� 0.19 2.25 0.3 �8.1�1� �7.8�1� �0.34�3� 6.3

0.4 �0.87�3� �0.62�3� �0.25�2� 0.31 0.4 �8.3�1� �7.9�1� �0.35�3� 6.3

0.5 �1.06�3� �0.80�3� �0.27�2� 0.44 0.5 �8.4�1� �8.0�1� �0.38�3� 6.2

0.6 �1.26�3� �0.99�3� �0.27�2� 0.60 0.6 �8.6�1� �8.2�1� �0.39�4� 6.2

0.7 �1.46�3� �1.19�3� �0.27�2� 0.78 0.7 �8.9�1� �8.6�1� �0.39�3� 6.4

1.50 0.3 �1.38�4� �1.01�4� �0.37�2� 0.51 2.50 0.3 �11.7�1� �11.5�1� �0.20�2� 9.9

0.4 �1.70�4� �1.29�4� �0.41�2� 0.71 0.4 �11.7�1� �11.5�1� �0.25�2� 9.6

0.5 �2.00�4� �1.59�4� �0.41�2� 0.95 0.5 �11.8�1� �11.5�1� �0.28�3� 9.4

0.6 �2.29�5� �1.89�5� �0.39�3� 1.2 0.6 �11.9�1� �11.6�1� �0.32�1� 9.2

0.7 �2.60�5� �2.22�5� �0.37�3� 1.5 0.7 �12.2�1� �11.9�1� �0.34�2� 9.2

1.75 0.3 �2.65�5� �2.13�5� �0.52�3� 1.3

0.4 �3.1�1� �2.5�1� �0.52�3� 1.6

0.5 �3.4�1� �2.9�1� �0.50�4� 1.9

0.6 �3.8�1� �3.3�1� �0.46�3� 2.3

0.7 �4.2�1� �3.8�1� �0.42�3� 2.6

TABLE IV. Average pressures for the bilayer system for several values of 
 and � for h=1.05. Notations are the same as in Table II.

� 
 Pzz
�dd� �T

�dd� �T
�HS� �̃ � 
 Pzz

�dd� �T
�dd� �T

�HS� �̃

1.00 0.3 �0.12�1� �0.20�1� 0.26�1� �0.92�2� 2.00 0.3 �0.62�4� �4.0�1� 1.8�1� �0.2�2�
0.4 �0.20�2� �0.36�2� 0.55�3� �1.54�5� 0.4 �0.80�5� �5.9�1� 2.7�1� �0.3�2�
0.5 �0.28�3� �0.59�3� 1.02�5� �2.4�1� 0.5 �1.0�1� �7.9�1� 3.7�2� �0.5�2�
0.6 �0.36�3� �0.87�3� 1.8�1� �3.9�1� 0.6 �1.2�1� �10.0�1� 5.0�2� �1.2�2�
0.7 �0.44�4� �1.24�4� 3.1�2� �6.4�1� 0.7 �1.28�1� �12.5�1� 6.8�3� �2.5�3�

1.25 0.3 �0.26�2� �0.47�2� 0.34�2� �0.81�4� 2.25 0.3 �0.43�4� �7.0�1� 3.1�2� 0.2�2�
0.4 �0.40�3� �0.84�3� 0.69�3� �1.34�5� 0.4 �0.59�5� �9.7�1� 4.4�2� �0.1�2�
0.5 �0.54�4� �1.31�4� 1.23�6� �2.1�1� 0.5 �0.8�1� �12.2�1� 5.6�3� 0.0�3�
0.6 �0.67�5� �1.91�5� 2.1�1� �3.5�1� 0.6 �1.1�1� �15.0�1� 7.0�4� �0.2�4�
0.7 �0.78�5� �2.6�1� 3.5�2� �5.8�1� 0.7 �1.26�3� �18.2�2� 9.1�5� �1.4�5�

1.50 0.3 �0.45�3� �1.01�3� 0.50�3� �0.59�5� 2.50 0.3 �0.32�3� �10.3�1� 4.3�2� 1.1�2�
0.4 �0.66�4� �1.69�5� 0.98�5� �1.1�1� 0.4 �0.54�4� �13.8�1� 6.3�3� 0.4�3�
0.5 �0.83�5� �2.55�5� 1.6�1� �1.7�1� 0.5 �0.76�5� �17.2�1� 7.6�4� 1.0�4�
0.6 �1.0�1� �3.6�1� 2.6�1� �2.8�2� 0.6 �1.0�1� �20.8�1� 9.4�5� 0.8�5�
0.7 �1.07�1� �4.9�1� 4.1�2� �4.7�2� 0.7 �1.5�1� �24.9�1� 12.1�5� �0.7�5�

1.75 0.3 �0.62�4� �2.05�5� 0.85�4� �0.3�1�
0.4 �0.83�5� �3.3�1� 1.6�1� �0.7�2�
0.5 �1.0�1� �4.6�1� 2.4�1� �1.2�2�
0.6 �1.1�1� �6.2�1� 3.5�2� �2.0�3�
0.7 �1.23�5� �8.1�1� 5.2�3� �3.7�3�
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The effect is most pronounced at the lower density 
=0.3.
The knowledge of hintra

112 �s� and hinter
112 �s� enables us to re-

cover intralayer and interlayer energies according to

Ūintra

N
= −

2�

3
�2



0

� 1

s2hintra
112 �s�ds ,

Ūinter

N
= −

2�

3
�2



0

� s

�s2 + h2�3/2hinter
112 �s�ds . �26�

Similarly, the pressure tensor components are given by

P̄zz
�dd� = − 4��2
2h


0

� s

�s2 + h2�5/2hinter
112 �s�ds ,

�̄T
�dd� = − 2��2
2


0

� 1

s2hintra
112 �s�ds

+ 

0

� s3

�s2 + h2�5/2hinter
112 �s�ds� . �27�

The quantities Ūintra, Ūinter, P̄zz
�dd�, and �̄T

�dd� computed with
the functions hintra

112 �s� and hinter
112 �s� can serve as a consistency

check with the direct simulation results for energy and pres-
sure using Ewald summations �Tables III and IV�. Such a
comparison is, however, conclusive only if the correlation
functions decay to zero on the scale of the simulation box
which was fulfilled only at the lower � values �cf. Figures
4–6 for the correlation functions�. For example, at h=1.05,


=0.7, and �=1.0 one has Ūintra /N=−0.55, Ūinter /N

=−0.16, P̄zz
�dd�=−0.43, and �̄T

�dd�=−1.26 in good agreement
with the results of Tables III and IV. For h=1.05, 
=0.7, and
�=2.0, integrating up to half the box length, one has

Ūintra /N=−5.9, Ūinter /N=−0.42, P̄zz
�dd�=−1.40, and �̄T

�dd�

=−12.6, which compare favorably with the values of Tables
III and IV.

Equations �26� and �27�, show that we have the relation

�̄T
�dd�=3Ūintra /A for h→�; this asymptotic behavior is in ac-

cordance with Eq. �23�. However, it is surprising that Eq.
�23� is verified with such accuracy even for h=1.05 �see Sec.
IV C and Fig. 3�a��.

The values of h220 for s�7 agree well with Eq. �18�. For
example, at �=2.5 on has P2�0.42 for both densities 0.3
and 0.7. This low value of P2 merely indicates some preva-
lent local nematic ordering but no global long-range nematic
ordering of the dipole moments.

The characterization of the structural organization of the
particles in the bilayer at high densities is subject to greater
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FIG. 2. �Color online� Average energies �a� and normal
pressures �b� as functions of h for 
=0.7 and �=1 and 2. The
symbols denote MC data and the lines are fits to the data using Eqs.
�21� and �22�, respectively. The fitting parameters for �=1 are e0

=0.16�0.01, e1=0.045�0.002 and f0=0.46�0.01, f1

=0.13�0.01. For �=2 they are e0=0.31�0.01, e1=0,28�0.01
and f0=0.68�0.03, f1=1.3�0.1.
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FIG. 3. �Color online� �a� Lateral pressure as a function of the
intralayer energy per unit area. Symbols are data from Tables III
and IV for densities 
=0.3−0.7, dipole strengths �=1.0–2.5, and
h=1.05; the straight line is given by Eq. �23�. �b� Surface stress as
function of dipole strength for 
=0.3−0.7 and h=1.05. Symbols are
data from Table IV and lines are given by Eq. �25� with
g1�a1 ;
 ,��=a1
2�4 / �1+�2� �a1�2.7� and �T

�HS��
 ,0� given by
the equation of state of hard disks �27�.
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uncertainty due to system size dependence and convergence
problems. To illustrate the difficulties we refer to snapshots
of configurations at 
=0.9, �=2, and h=1.05 taken at dif-
ferent “time” intervals during the MC evolution of the sys-
tem shown in Figs. 8�a�–8�d�. The system, with 2	1600
particles, was started from two square lattices with random
orientations of the dipole moments. Already after 500 cycles
of trial moves small vortices have built up, predominantly
around particles with dipole moments oriented perpendicu-
larly to the layers �Fig. 8�a��. As sampling proceeds, the vor-

tices grow bigger and large patches develop within which
particles arrange with local hexagonal order and parallel
alignement of the dipole moments �Figs. 8�b� and 8�c��,
clearly an energetically favorable ordering. It remains some-
what unclear whether, for small system sizes, the PBCs can
stabilize such a ferroelectric arrangement. Such a possibility
was indeed observed for a smaller system size �2	576 par-
ticles� �see Figure 8�d��, and in one instance �h=1.005, �
=2� also for the 2	1600 system though an independent run
of similar length �1	106 cycles� at the same state point
retained a vortex arrangement. In some cases, for the smaller
2	576 system, we also observed formation of stripes with
opposite directions of the dipole moments.

The structural behavior just described seems typical for
dipole strength ��2 and does not depend much on layer
separation in the range h=1–2. For larger dipole moments
the vortex structure appears to be more stable but, evidently,
relaxation of the dipole moments is also slower. Certainly
there are strong structural correlations between the layers. As
for the lower densities, particles arrange preferentially to sit
on top of each other with opposite directions of the dipole
moments.

Finally, in Fig. 9 we show the organization of dipole mo-
ments in a bilayer with h=1.05 for close packed square and
hexagonal lattices of the HSs �disks�. In both cases the HSs
in the two layers were taken to be on top of each other. On
the square lattices �
=1.0� the dipole moments in each layer
align in parallel lines along the box edges with opposite di-
rections of the dipole moments in neighboring lines �Fig.
9�a��. A small tendency of microvortex formation is ob-
served. These arrangements are typical of �monolayer�
ground state configurations. For a square lattice of in-plane
dipoles, the ground state is continuously degenerated but
thermal contributions can select configurations where rows
or colums of parallel spins alternate �38�. In contrast, for the
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FIG. 5. �Color online� Interlayer angle-averaged pair distribution function ginter
000 �s� and angular projections hinter

klm �s� of the pair distribution
functions ginter�12� for the DHS bilayer at 
=0.3 and h=1.05 for several values of �. �a� ginter

000 �s�; �b� hinter
110 �s�; �c� hinter

112 �s�, �d� hinter
220 �s�.
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2D triangular lattice with in-plane dipoles, the ground state
of the infinite system is ferroelectric �39,40�; in finite sys-
tems the dipolar ordering in the ground state may, however,
depend on the system size and aspect ratio of the lattice �41�.
In the present finite-temperature calculations �
=1.15�, we
observe a ferroelectric phase with slight zigzag ordering of
the dipole moments �Fig. 9�b��. The influence on ordering of
dipole strength, system size, and use of PBCs has still to be
investigated. It should be noted also that in our calculations
the dipoles are not completely in plane. As expected, for both
lattices, dipole moments in different layers run in opposite
directions.

V. SUMMARY AND CONCLUSION

We have investigated by MC simulation the structural and
thermodynamic properties of fully orientable dipolar hard
spheres mobile in two parallel planar surfaces with particular
emphasis on the forces between the two layers. Interlayer
correlations turn out to be quite small, almost vanishing at
layer separations of two HS diameters. The interlayer energy
is attractive for all states considered and the normal pressure
is negative, meaning that an external force must be supplied
to keep the layers apart. Indeed isobaric MC simulations,
allowing h to fluctuate, did not enable us to find an equilib-
rium state; either the system collapsed �at low applied nega-
tive pressure� or the two layers drifted away �at larger pres-
sures�. The normal pressure is well described by a −1 /h5

dependence at larger separations in agreement with a second-
order perturbation theory of the interaction free energy of the
surfaces in an infinite dielectric medium by Attard and
Mitchell �35,36�. Despite the weak interlayer energy there
are strong correlations for the structural behavior of the par-
ticles in the two layers. Particles preferentially sit on top of
each other with opposite orientations of the dipole moments.

At densities of the order 
�0.9 convergence of the MC
sampling is slow and, moreover, finite-size effects may affect
the results. Although we believe that for large systems vortex
formation is the preferred structure, arrangements with ferro-
electric ordering or stripes with up and down orientations of
the dipole moments were stabilized in the smaller systems,
likely by the use of periodic boundary conditions. These
problems clearly need a more detailed investigation.

As an extension of the present work it would be of inter-
est to consider the case where the media on either side of the
layers have different dielectric constants, as would be the
case, for instance, in a lipid bilayer model where the hydro-
carbon tails and aqueous regions are approximated by ideal
dielectrics. Although the surface polarization arising from
the dielectric discontinuities can in principle be taken into
account through dielectric images �42�, few simulation re-
sults have been presented so far �43�. Such simulations could
valuably add to the comprehension of the origin of the repul-
sive “hydration” forces measured in phospholipid bilayers at
short distances �44�. Existing theoretical approaches based
on continuum electrostatics �36,45� seem to fail to predict
correctly these repulsive forces.
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APPENDIX A: EWALD SUMS FOR THE DIPOLAR
ENERGY OF THE BILAYER

The total dipolar energy of the bilayer computed with the
Ewald method is written as

Udd = Er + EG�0
�1� + EG�0

�2� + EG�0
�3� + EG=0. �A1�

Here Er is the short-range �direct space� contribution to the
energy given by

Er =
1

2�
i�j

���i · � j�B�rij� − ��i · rij��� j · rij�C�rij��

�A2�

with

B�r� =
erfc��r�

r3 +
2�

��

exp�− �2r2�
r2 ,

C�r� = 3
erfc��r�

r5 +
2�

��
2�2 +

3

r2� exp�− �2r2�
r2 . �A3�

In Eq. �A2� it is assumed that the parameter � is sufficiently
large to restrict interactions to the basic simulation cell. The
energy Er can, in turn, be separated into an intralayer, Er

intra,
and an interlayer, Er

inter, contribution. The four last terms in
Eq. �A1� are the reciprocal space contributions. Each of the
terms is again separated into intralayer and interlayer contri-
butions. They are split into three contributions: EG�0

�1� in-
volves only coupling between the normal components of di-
pole moments, EG�0

�2� coupling between in-plane and normal
components of dipoles, and EG�0

�3� in-plane coupling. Contri-
butions to the interlayer energy are given by

(b)

(a) (c)

(d)

FIG. 7. �Color online� Snapshots of bilayer configurations of particles at �=2.0 �a�,�b� and 2.50 �c�,�d� for h=1.05; snapshots �a� and �c�
are for 
=0.3 �N=1058�; snapshots �b� and �d� for 
=0.7 �N=1024�. Particles in different layers are represented by different colors. The HS
cores are represented by circles of diameter �=1 and the directions of dipole moments by arrows.
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EG�0
�1,inter� =

�

A
�

G�0
I��,G;h�Re� �

i�L1

�i
z exp�iG · si��

	 �
j�L2

� j
z exp�− iG · s j��� ,

EG�0
�2,inter� =

�

A
�

G�0
J��,G;h�Im� �

i�L1

��i · G�exp�iG · si��
	 �

j�L2

� j
z exp�− iG · s j�� +  �

i�L1

�i
z exp�iG · si��

	 �
j�L2

�� j · G�exp�− iG · s j��� ,

EG�0
�3,inter� =

�

A
�

G�0
K��,G;h�Re� �

i�L1

��i · G�exp�iG · si��
	 �

j�L2

�� j · G�exp�− iG · s j��� , �A4�

where Re�z� and Im�z� are the real and imaginary parts of the
complex number z, respectively. G=2��

nx

Lx
,

ny

Ly
�, �nx, ny inte-

gers� is a two-dimensional vector in the reciprocal lattice and
G= �G�. The functions I�� ,G ;h�, J�� ,G ;h�, and K�� ,G ;h�
are given by

(b)

(a) (c)

(d)

FIG. 8. Bilayer configurations of the 2	1600 particle system at 
=0.9, �=2, and h=1.05 at different intervals of the MC simulation;
snapshot after �a� 500 cycles, �b� 0.26	106 cycles, and �c� 1.75	106 cycles. �d� Result for 2	576 particles after 2.6	106 cycles. For
clarity only the particle arrangements in one layer are shown in �a�–�c�. The arrows denote the projections of the dipole moments on the layer
plane. Thus dipoles perpendicular to the layer appear as dots.
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I��,G;h� =
4�

��
exp−

G2

4�2 − �2h2�
− G2K��,G;h� ,

J��,G;h� = exp�Gh�erfc G

2�
+ �h�

− exp�− Gh�erfc G

2�
− �h� ,

K��,G;h� =
1

G
�exp�Gh�erfc G

2�
+ �h�

+ exp�− Gh�erfc G

2�
− �h�� . �A5�

The constant term is

EG=0
�inter� =

4���

A
exp�− �2h2�� �

i�L1

�i
z� �

j�L2

� j
z�� .

�A6�

Contributions to the intralayer energy are given by

(b)

(a) (c)

(d)

FIG. 9. Snapshots of bilayer configurations of particles at close packing. �a� square lattice �
=1, �=2, h=1.05, N=3200�; �b� hexagonal
lattice �
=1.15, �=2, h=1.05, N=2400�. The particles in the two layers are on top of each other. The arrows denote the projections of the
dipole moments on the layer plane. The two layers are shown separately.

STRUCTURE AND THERMODYNAMICS OF A FERROFLUID… PHYSICAL REVIEW E 77, 051501 �2008�

051501-13



EG�0
�1,intra� =

�

A
�

G�0
D��,G�� �

i�L1

�i
z exp�iG · si��2

+ � �
j�L2

� j
z exp�iG · s j��2� ,

EG�0
�2,intra� = 0,

EG�0
�3,intra� =

�

A
�

G�0
H��,G�� �

i�L1

��i · G�exp�iG · si��2

+ � �
j�L2

�� j · G�exp�iG · s j��2� , �A7�

with

D��,G� =
2�

��
exp�− G2/4�2� − G erfc�G/2�� ,

H��,G� =
erfc�G/2��

G
, �A8�

and the constant is

EG=0
�intra� =

2���

A � �
i�L1

�i
z�2

+  �
j�L2

� j
z�2� −

2�3

3��
�

i

�i
2.

�A9�

Due to the 2D character of G it is easily seen from the
corresponding term in Eq. �A4� �interlayer contribution� that
EG�0

�2,intra� must vanish.

APPENDIX B: THE MICROSCOPIC STRESS TENSOR
OF THE BILAYER

In this appendix, we derive the microscopic stress tensor
for the bilayer system from its equations of motion, in a way
similar to the one of Ref. ��28��a�� for inhomogeneous fluids.
The microscopic stress tensor of the bilayer is split into nor-
mal �N and lateral �T components as

� = �T + �N = ��xx �xy 0

�xy �yy 0

0 0 0
� + � 0 0 �xz

0 0 �yz

�xz �yz �zz
� .

�B1�

The Lagrangian function of the bilayer system, with the con-
straints zi=H1 for i�L1, and zi=H2 for i�L2 is given by

L = �
i�L1�L2

1

2
miṡi

2 + �
i�L1

1

2
miḢ1

2 + �
i�L2

1

2
miḢ2

2

−
1

2�
i

�
j�i

��sij,zij� − �
i�L1�L2

�ext�si,zi� , �B2�

where � is the pair potential energy due to interactions be-
tween particles and �ext represents the action of any external
fields. In the above equation, H1 and H2 are collective vari-
ables associated with the z coordinate of the layers. From the

Lagrangian of the system, we obtain the equations of motion
for the particles in the layer L1 and the collective variable
H1:

ms̈i = − �
j�L1,j�i

�i��sij,0� − �
j�L2

�i��sij,H2 − H1�

− �i�ext�si,H1� , �B3�

N0mḦ1 =
�

�z
�

i�L1

�
j�L2

��sij,H2 − H1� −
�

�z
�

i�L1

�ext�si,H1� ,

�B4�

and similar equations for the layer L2. m denotes the mass of
the particles.

The momentum density for the bilayer system can be
written as

J�s,z,t� = JT�s,z,t� + JN�s,z,t�êz = m��z − H1� �
i�L1

ṡi��s − si�

+ m��z − H2� �
i�L2

ṡi��s − si� + mḢ1��z − H1�

	 �
i�L1

��s − si�êz + mḢ2��z − H2� �
i�L2

��s − si�êz,

�B5�

where ��x� is the Dirac distribution. From the time derivative
of the momentum density, we obtain easily �28� the kinetic
contribution to the lateral component of the stress tensor as

��
K �s,z,t� = − m��z − H1� �

i�L1

ṡi
�ṡi

��s − si�

− m��z − H2� �
i�L2

ṡi
�ṡi

��s − si� �B6�

with � ,=x ,y. The kinetic contribution to the normal com-
ponent is obtained similarly as

��z
K �s,z,t� = − mḢ1��z − H1� �

i�L1

ṡi
���s − si�

− mḢ2��z − H2� �
i�L2

ṡi
���s − si� ,

�zz
K �s,z,t� = − mḢ1

2��z − H1� �
i�L1

��s − si�

− mḢ2
2��z − H2� �

i�L2

��s − si� . �B7�

The configurational contributions to the stress tensor, follow
from Eq. �B3�,
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��
C �s,z,t� = 1

2 �
i�L1

�
j�L1,j�i

�i
���sij,0�


Cij

dl ��s − l� +
1

2 �
i�L1

�
j�L2

�i
���sij,H2 − H1�


Cij

dl ��s − l����z − H1�

+ 1

2 �
i�L2

�
j�L2,j�i

�i
���sij,0�


Cij

dl ��s − l� +
1

2 �
i�L2

�
j�L1

�i
���sij,H1 − H2�


Cij

dl ��s − l����z − H2� �B8�

with �=x ,y and Cij a contour joining si to s j in the plane
perpendicular to the z direction. Equations �B8� and �B6�
allow one to fully determine the lateral component of the
stress tensor of the bilayer. The integrals in Eq. �B8� can be
evaluated by using the parametrization proposed by Irving
and Kirkwood ��28��b��, namely,

�
i�L1

�
j�L1,j�i

�i
���sij,0�


Cij

dl ��s − l�

= �
i�L1

�
j�L1,j�i

sij
�i

���sij,0�

0

1

d� �„s − �s j − �1 − ��si…

�B9�

and

�
i�L1

�
j�L2

�i
���sij,H2 − H1�


Cij

dl ��s − l�

= �
i�L1

�
j�L2

sij
�i

���sij,H2 − H1�

	

0

1

d� �„s − �s j − �1 − ��si…

= �
i�L2

�
j�L1

sij
�i

���sij,H1 − H2�

	

0

1

d� �„s − �s j − �1 − ��si… . �B10�

Equations �B6� and �B8� show that �� can be written in the
form �� ,=x ,y�

���s,z,t� = ��
�1��s,t���z − H1� + ��

�2��s,t���z − H2� .

�B11�

One should note that, if z�H1 and z�H2, then ���s ,z , t�
=0.

In accord with solid surface physics, we define the surface
stress tensor as

���s,t� =
 ���s,z,t�dz = ��
�1��s,t� + ��

�2��s,t� .

�B12�

If one adopts the two-component monolayer picture dis-
cussed in the main text, then the two contributions ��

�1� and
��

�2� correspond, respectively, to the partial contribution of
each species to the surface stress tensor.

From the surface stress tensor we define the lateral com-
ponent of the pressure tensor of the bilayer as the ensemble
average of the surface stress tensor as

�� = −� 1

A



L1�L2

ds ���s,t�	 . �B13�

It follows that

�� = 2
kT�� −� 1

2A
�

i�L1

�
j�L1,j�i

sij
�i

���sij,0�	
−� 1

2A
�

i�L2

�
j�L2,j�i

sij
�i

���sij,0�	
−� 1

A
�

i�L1

�
j�L2

sij
�i

���sij,H2 − H1�	 . �B14�

The average lateral pressure �T and the surface stress �̃ are
then given by

�T =
1

2
��xx + �yy� = − �̃ . �B15�

The configurational contribution to the normal component
�zz allows us to obtain the force acting on the layers. From
the equations of motion of H1 and H2, we obtain

�

�z
�zz

C �s,z,t� =
1

N0
 �

n�L1

��s − sn����z − H1�

	 �

�z
�

i�L1

�
j�L2

���sij,z��z=H2−H1�
−

1

N0
 �

n�L2

��s − sn����z − H2�

	 �

�z
�

i�L1

�
j�L2

���sij,z��z=H2−H1� .

�B16�

Thus, the total force F2→1
z acting on layer L1 due to the

particles in layer L2 is given by

F2→1
z = −
 ds

�

�z
�zz

C �s,z = H1,t�

= −
�

�z
�

i�L1

�
j�L2

���sij,z��z=H2−H1
, �B17�

and, obviously, we have
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F1→2
z = −
 ds

�

�z
�zz

C �s,z = H2,t� = − F2→1
z . �B18�

The average force per unit area is

f2→1
z =� 1

A
F2→1

z 	 = −� 1

A

�

�z �
i�L1

�
j�L2

���sij,z��z=H2−H1	
= Pzz � PN. �B19�

Equation �B19� for PN is in full agreement with the deriva-
tion of the normal pressure for similar systems in Refs.
�26,28–30�.

If the z coordinates of the layers are fixed, as is the case in
most of the computations in the present work, an external
field compensates exactly the microscopic forces. In this case

we have H1=−H2=h /2, Ḣ1= Ḣ2=0, and Ḧ1= Ḧ2=0 and the
external forces are given by

Fext,1
z = �

i�L1

�

�z
�extsi,

h

2
� = − F2→1

z �B20�

and

Fext,2
z = − F1→2

z = F2→1
z = − Fext,1

z . �B21�

APPENDIX C: RECIPROCAL SPACE CONTRIBUTIONS
TO THE PRESSURE TENSOR AND FORCES

The general formulas for the components of the stress
tensor in terms of the interaction potential are given in Sec.
II. In this appendix, we give explicit expressions for the re-
ciprocal space contribution in an Ewald sum of the stress
tensor components. They can be obtained directly from the
results of Appendix A or from the general derivation given
by Heyes �19� for quasi-two-dimensional systems.

The short-ranged contributions are easily obtained from
Eqs. �A2� and �A3�.

From Eq. �4� and with the notations of Appendix A, we
have, for the bilayer system,

�T
�dd,G� = −

1

2A��
i

si · �si
�EG�0

�intra� + EG�0
�inter��	 , �C1�

Pzz
�dd,G� = −

1

A
�� �

�z
EG�0

�inter��
z=h
	 . �C2�

The intralayer contributions to the lateral components of the
stress tensor are given by

�
i

si · �si
EG�0

�1,intra� = −
2�

A
�

G�0
D��,G�Im� �

i�L1

�G · si��i
zexp�iG · si�� �

i�L1

�i
z exp�iG · si��

+  �
i�L2

�G · si��i
z exp�iG · si�� �

i�L2

�i
z exp�iG · si��� , �C3�

�
i

si · �si
EG�0

�2,intra� = 0, �C4�

�
i

si · �si
EG�0

�3,intra� = −
2�

A
�

G�0
H��,G�Im� �

i�L1

�G · si���i · G�exp�iG · si�� �
i�L1

��i · G�exp�iG · si��
+  �

i�L2

�G · si���i · G�exp�iG · si�� �
i�L2

��i · G�exp�iG · si��� , �C5�

with functions D and H as defined in Eq. �A8�.
Interlayer contributions are given by

�
i

si · �si
EG�0

�1,inter� =
�

A
�

G�0
I��,G;h�Im� �

i�L1

�i
z exp�iG · si�� �

j�L2

� j
z�G · s j�exp�− iG · s j��

−  �
i�L1

�i
z�G · si�exp�iG · si�� �

j�L2

� j
z exp�− iG · s j��� , �C6�

�
i

si · �si
EG�0

�2,inter� =
�

A
�

G�0
J��,G;h�Re� �

i�L1

�i
z�G · si�exp�iG · si�� �

j�L2

�� j · G�exp�− iG · s j�� −  �
i�L1

�i
z exp�iG · si��

	 �
j�L2

�� j · G��G · s j�exp�− iG · s j�� +  �
i�L1

��i · G��G · si�exp�iG · si�� �
j�L2

� j
z exp�− iG · s j��

−  �
i�L1

��i · G�exp�iG · si�� �
j�L2

� j
z�G · s j�exp�− iG · s j��� , �C7�
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�
i

si · �si
EG�0

�3,inter� = −
�

A
�

G�0
K��,G;h�Im� �

i�L1

��i · G��G · si�exp�iG · si�� �
j�L2

�� j · G�exp�− iG · s j��
−  �

i�L1

��i · G�exp�iG · si�� �
j�L2

�� j · G��G · s j�exp�− iG · s j��� , �C8�

with functions I, J, and K defined in Eq. �A5�.
The contributions to the normal component of the stress tensor are given by

� �

�z
EG�0

�1,inter��
z=h

= −
�

A
�

G�0
G2J��,G;h� +

4�3h
��

Q��,G;h��Re� �
i�L1

�i
z exp�iG · si�� �

j�L2

� j
z exp�− iG · s j��� , �C9�

� �

�z
EG�0

�2,inter��
z=h

=
�

A
�

G�0
G2K��,G;h� −

2�

��
P��,G;h��Im� �

i�L1

��i · G�exp�iG · si�� �
j�L2

� j
z exp�− iG · s j��

+  �
i�L1

�i
z exp�iG · si�� �

j�L2

�� j · G�exp�− iG · s j��� , �C10�

� �

�z
EG�0

�3,inter��
z=h

=
�

A
�

G�0
J��,G;h�Re� �

i�L1

��i · G�exp�iG · si�� �
j�L2

�� j · G�exp�− iG · s j��� . �C11�

The function Q�� ,G ;h� is obtained from the derivative of J, i.e.,

Q��,G;h� = 2 exp−
G2

4�2�exp�− �2h2� . �C12�

Finally,

� �

�z
EG=0

�inter��
z=h

= − 2�2hEG=0
�inter� �C13�

with EG=0
�inter� given by Eq. �A6�.
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